
SNSW Omni Channel Reference Architecture

Ver: 1.2 1

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	

	

	

Service NSW

Omni Channel Reference Architecture

April 2019
Ver 1.2

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	
	

	

	 	
	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

SNSW Omni Channel Reference Architecture

Document History

Version Author Contact Date Changes
1.0 Michael Lisser Michael.Lisser1@service.nsw.gov.au July 18 Initial	Unify 	Version
1.1 Michael Lisser Michael.Lisser1@service.nsw.gov.au March 19 Initial	SNSW 	Version
1.2 Michael Lisser Michael.Lisser1@service.nsw.gov.au April 19 Refactored	 Version

Ver: 1.2 2

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	

SNSW Omni Channel Reference Architecture

Contents
1 Overview.. 6

1.1 Exec Summary.. 6

1.2 Business Objectives.. 6

2 Principles.. 8

2.1 Enterprise Principles .. 8

2.2 Application	 Principles... 8

3 High Level Architecture.. 9

3.1.1 User Experience Components.. 10

3.1.2 Transaction Logic Components .. 10

3.1.3 Value Added Components ... 10

3.1.4 Services .. 11

3.1.5 Security .. 11

3.1.6 Auxiliary Capability... 12

3.2 Context... 12

4 Detailed Architecture... 13

4.1 Overview .. 13

4.1.1 Component Deployment Model .. 14

4.1.2 Design Considerations.. 15

4.2 User Experience Components.. 16

4.3 Transaction Logic Components.. 16

4.4 Value 	Added 	Components ... 17

4.4.1 Transaction Logging ... 18

4.4.2 Metrics Logging.. 18

4.4.3 Receipting .. 19

4.4.4 SMS .. 19

4.4.5 Email .. 19

4.4.6 Notification .. 19

4.4.7 Encryption / Decryption... 19

4.4.8 Case Management ... 20

4.4.9 Customer Management ... 20

4.4.10 Payment Management .. 20

4.4.11 JWT Management .. 20

4.4.12 Transaction	 Configuration.. 20

4.4.13 File	 Writer .. 21

Ver: 1.2 3

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	

SNSW Omni Channel Reference Architecture
4.4.14 File	 Reader ... 21

4.4.15 Caching... 21

4.4.16 Error Mapping .. 21

4.4.17 Image 	Store .. 21

4.4.18 Signature	 Store .. 21

4.4.19 Pause	 / Resume.. 22

4.4.20 Proof of Identity ... 22

4.5 Services .. 22

4.5.1 Customer Services.. 23

4.5.2 Agency Services.. 23

4.5.3 Value Added Services... 23

4.6 Security .. 23

4.6.1 Client API Security .. 24

4.6.2 Agency API Security.. 24

4.6.3 Data Security .. 24

4.6.4 Payment Fraud Detection .. 24

4.7 Auxiliary Capability... 24

4.7.1 Environments and Organisations ... 24

4.7.2 Payments ... 25

4.7.3 Sensitive	 Information Handling.. 30

4.7.4 Agency Availability, performance and	 Caching.. 35

4.7.5 Large File Handling... 35

4.7.6 Data Storage .. 36

4.7.7 Alerts .. 36

4.7.8 Digital Asset Management ... 36

4.7.9 CRM.. 37

4.7.10 Dashboards .. 38

5 Implementation 	Patterns... 39

5.1 Single	 Channel Implementation... 39

5.2 Multi Channel Implementation.. 39

5.3 Secure Multi Channel Implementation .. 40

5.4 Secure	 Multi Channel Implementation with Payments ... 40

5.5 Secure	 Multi Channel Implementation with Payments and CRM Integration..................... 41

5.6 Full Environment.. 42

6 Future	 Direction... 44

Ver: 1.2 4

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	 	 	

	

	

	

SNSW Omni Channel Reference Architecture
6.1 Fault Tolerance	 and Redundancy... 44

6.2 Scaling .. 45

6.2.1 Scaling VAS	 Components ... 46

6.3 Databases... 46

7 Example Implementations ... 47

7.1 RSA/RCG... 47

7.2 IDP.. 47

7.3 CAR... 48

7.4 Cost of Living.. 49

Ver: 1.2 5

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

 	 	
 	 	 	 	 	 	 	 	 	 	

 	 	
 	 	 	 	 	 	

SNSW Omni Channel Reference Architecture

1 Overview
1.1 Exec Summary
This document presents a	 common Service NSW Omni Channel Reference Architecture as a design	
pattern	 for the delivery of new capability into	 the Service NSW ecosystem.

The aim of this document is to provide a	 pattern for delivery teams, products, projects and programs
to work with so that	 they deliver	 a consistent	 solution across teams.

The aim of the architecture is to provide an Omni Channel approach to delivery that leverages allows
autonomy within the	 teams, while	 ensuring conformity across programs of work, while leveraging
new technology and a	 Microservice	 Architecture	 to deliver Customer Capability.

The architecture provides guidance and direction to Service NSW’s internal Product and Project
teams and our	 external partners (Agencies and Vendors).

It is 	expected 	that 	all	product 	teams, 	and 	projects 	will	conform 	to 	the 	approaches 	and 	guidelines 	laid
out by this architecture.

It 	is anticipated that this architecture will evolve over	 time ensuring alignment	 between strategy and
delivery.

1.2 Business Objectives
The Business Objective for the Omni Channel Reference Architecture is to	 achieve Omni Channel
delivery of Services, and	 alignment of delivery.

Omni Channel delivery of services is where a service can be delivered equally across all channels,
and a	 Customer	 can within a single transaction operate across multiple channels.

Omni Channel delivery does not imply that all transactions will be offered across all channels, some
transactions will never	 be offered over	 the phone (simply due to the nature of	 the transaction), but	
rather	 that	 where a transaction is built	 in one channel it	 can be made available to all channels
without major refactoring.

Multi Channel transaction operation is where a Customer	 starts a transaction in one channel,
typically “saves” the	 transaction part way through, and continues the	 transaction in the	 next
channel. For example a Customer may	 start a transaction on the Mobile, get part way	 through, save
the transaction, and continue it	 on their	 desktop, get	 further	 through, save it	 again	 and	 complete the
transaction at	 a Service Centre.

By Alignment of Delivery the business wish	 to	 see all programs, products and	 projects adopt the
same pattern and structure of delivery, that reuse is	 encouraged, while autonomy of the team is
maintained.

The Omni Channel Reference Architecture also provides a blueprint	 for	 the migration of	 capability of	
the legacy stack and onto the new technology platforms.

Overall the business desire a solution	 that is:

• Omni Channel
o Able to	 deliver the same Business Capability across any channel equally

• Customer Centric
o Able to	 deliver transactions with	 a focus on	 useability

Ver: 1.2 6

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

 	 	
 	 	 	 	 	 	 	 	

 	
 	 	 	 	 	 	 	 	 	

 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

 	 	
 	 	 	 	 	 	 	 	 	

	 	 	 	
 	

 	 	 	 	 	 	

	

SNSW Omni Channel Reference Architecture
• Technology Independence

o Able to	 support a wide range of technology choices
• Consistent

o Able to	 deliver the same look and	 feel across all channels
• Scalable, High Performant and Portable

o Able to	 deploy and	 scale a high	 performance solution	 in	 a multitude of environments
• Low Cost for Delivery

o Able to	 deliver the solution	 at a low cost without the need	 for specialist resources
• Low Cost for Licencing

o Able	 to deliver the	 solution without the	 need for high cost specialist licences
• Secure	 and Auditable

o Able to	 deliver a solution	 that secures data, access and	 capability in	 line with	
expectations of a	 government department

• Extensible
o Able to	 be used	 equally across multiple transactions

Ver: 1.2 7

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

 	 	
 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 		

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 			

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

SNSW Omni Channel Reference Architecture

2 Principles
The Architecture is developed in accordance with a	 number of overarching principles, these
principles can	 be decomposed	 into	 two	 primary categories:

• Enterprise Principles
• Application Principles

Enterprise Principles guide	 the	 overall Service	 NSW Architecture.

Application	 Principles guide the delivery of a capability within	 the Service NSW Architecture.

2.1 Enterprise Principles
Enterprise Principles include:

Enterprise Patterns – The principle that all Products and Projects should follow a similar	 overarching
enterprise	 design pattern.

Application Patterns – The principle that within the bounds of the Enterprise Patterns, that Product
and Projects are	 able	 to design their own independent Application Patterns for implementation.

Change	 Patterns – The principle that changes to Architecture Patterns is allowed.

Collaboration – The principle that decisions on Change Patterns is made through collaboration.

Self Service – The principle of enabling self service delivery of platforms and components.

Reuse – The principle of reusing existing (new technology) capability in preference to rebuilding.

Omni Channel – The principle of delivering all transactions equally across all channels.

2.2 Application Principles
Application	 Principles	 include:

Future Proof – The principle of developing solutions that align with the SNSW Strategic Direction.

Encapsulation and Abstraction – The principle of grouping like functionality together, and accessing
it 	via a 	simplified 	set 	of 	interfaces.	

Singe Responsibility – The principle of automic transactions, where a	 transaction performs only a	
single purpose.

Continuous Delivery & Integration – The principle of deliver and integrate capability continuously.

Continuous Improvement – The principle of building 	on 	existing 	capability 	to 	continually 	improve
solutions.

Don’t Overengineer – The principle of keeping things simple.

Lightweight Pipes	 and Smart Endpoints – The principle that functional capability is only held in
Component, not connections.

Microservices	 with Security – The principle of leveraging a	 microservice architecture overlayed with
security at the API level.

Stateless – The principle of Stateless Transactions where state is only held at the agency.

Ver: 1.2 8

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		

	
	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 		

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 		

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	

SNSW Omni Channel Reference Architecture
Centralised Logging – The principle of leveraging a centralised logging solution for	 all components.

3 High Level Architecture
The high level architecture is based on a	 Microservice Strategy, where there is a	 clear separation
between	 the channel delivery mechanism (User Experience), the underlying functional capability
(Transaction Logic), and shared services (Value Added).

Agency Transaction

Customer

Perform With
User

Experience
Interacts with

Add

Value

User Experience – The channel technology involved in delivering the experience (look and feel) to
the Customer.

Transaction Logic – The process involved in 	executing 	the 	transaction 	with 	the 	Agency.

Value Added – The services that SNSW brings to any transaction (such as Email, SMS, Receipting,
Payments etc).

These core building blocks are abstracted through the use of a	 Service Layer, and underpinned	
through the use of	 a common security platform.

To gain a	 level of conformity across the Channel Experiences a	 Digital Asset Management platform is
used	 to	 house and	 deliver Digital Assets.

Each of the components are intended to be stateless.

Ver: 1.2 9

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	
	

	

	 	 	

	

	
	

		 	

	 	 	 		

	

	

	

	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	

	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

SNSW
Value	Added
Services

SNSW Omni Channel Reference Architecture

Client
Services Transaction

User	 Experience
(Ch 1 - Digital)

Agency Transaction Logic

SNSW
Value	 Added
Services

Agency
Services

SNSW
Services

Agency
ESB

User Experience Business Logic Internal Capability Agency/External Capability

Security Services

External System
(CRM/Email/

SMS)

Transaction
User	 Experience
(Ch N	 - OTC)

DAM

3.1.1 User Experience Components
The User Experience is the primary point of contact between the Customer and the Service NSW
offerings. The User Experience resides in	 the DMZ, outside the Service NSW firewall (in	 front of the
Client Services).

The User Experience is intended to provide a	 light weight presentation layer to any transaction.

The User Experience is intended to be consistent across transactions (similar look and feel, function
etc). This consistency of interface	 is achieved through	 the leverage of a Digital Asset Management
platform.

It is 	intended 	that 	for 	any 	given 	Transaction 	there 	are 	multiple 	User 	Experience 	Components.

The User Experience is abstracted from the Transaction Logic through Client Services.

3.1.2 Transaction Logic Components
The Transaction Logic is the primary implementation of the business logic to execute a	 transaction
with an agency (or agencies). It is a headless component accessed only via Web Services. The
Transaction Logic orchestrates the process of completing	 the	 transaction with the	 agency, along	 with
any additional capability (Value	 Added) layered on top of the	 transaction by Service	 NSW (such as
Taking a	 Payment, Sending an Email, Generating a	 Receipt etc).

The intent is that there is only one Transaction Logic component per transaction. There are expected
to be 1,200 transactions provisioned through SNSW, which equates to 1,200 Transaction Logic
Components. It	 is worth noting the Transaction Logic component	 may offer	 multiple services to the
User Experience to complete a transaction (such as	 Price Transaction, Validate Data, Complete
Transaction, Roll Back etc).

The Transaction Logic is intended to be stateless.

The Services offered to the User Experience should be clearly defined business services.

3.1.3 Value Added Components
Value Added Components provide discrete common capability that can be leveraged and re-used	 by
any transaction logic. Value	 Added Components are	 headless and accessed through their APIs.

Ver: 1.2 10

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 		

	 	 	 	 	

 	 	
 	
 	
 	 	
 	
 	 	
 	 	
 	
 	

	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	

 	
 	 	 	 	
 	 	 	

SNSW Omni Channel Reference Architecture
Value Added Components can only be accessed via Transaction Logic as part of a	 business process,
they are not	 intended to be used directly by a User	 Experience Component.

The Value Added Component is independent of any specific Transaction.

Typical Value Added Components include:

• Receipt Generation
• Email	Messaging

• SMS	 Messaging

• Transaction Logging

• Payments
• Case Management
• Client Management
• File	 Generation/Transmission

• Pause/Resume

It is 	anticipated 	that 	there 	will	be 	about 	20-30	 Value	 Added Services.

3.1.4 Services
The Service Layer provides abstraction and security between the core components.

The Service Layer is intended to be a	 light weight dumb pipe with smart end points. That is it
implements 	no 	actual	capability in 	relation 	to 	any 	transaction 	logic 	or 	value 	added 	capability.

3.1.4.1 Client Services
Client Services 	expose 	Transaction 	APIs 	to 	the 	end 	User 	Experience 	Layer.	

The Client Services need to implement and enforce any B2C	 security required on the APIs	 exposed.

The Client Services only expose Transaction APIs.

3.1.4.2 Agency Services
Agency Services expose and	 standardise services	 provisioned by the downstream Agency.

Agency Services provision	 the B2B	 security applied	 between	 SNSW and	 the Agency.

Agency Services may re-implement 	Agency 	Services 	into a 	more 	SNSW 	friendly 	standard 	to 	ensure
consistency	 across	 multiple 	agency 	APIs.

3.1.4.3 Value Added Services
Value Added Services expose the Value Added components to the Transaction Logic.

The Value Added Services do not need to apply security as the APIs are not exposed outside the
SNSW network.

3.1.5 Security
Security is leveraging the	 existing SNSW security patterns, particularly focusing on:

• Identity 	Management
• Client Edge Security B2C

• Business Security B2B

Ver: 1.2 11

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	

	 	

 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	

			 	 	 		

	
	 	 	

	 	

	 	

	

	 	

	

	

	
	 	

	
	 	

	
	

	

	

SNSW Omni Channel Reference Architecture
Identity 	Management is 	provisioned 	by 	the SNSW Identity 	Management 	Platform, 	and allows the	
enforcement of Credentials and Authentication. This is provisioned through an OAuth Standard.

Client Edge Security needs to	 be applied	 at the Client Services Layer, where access to	 an	 API is only
available	 if the	 user has first authenticated. This is a user based	 security approach.

Business Security is applied	 between	 SNSW and	 the downstream agency. Typically this is a variation
of TLS, where certificates are used	 and	 exchanged	 between	 SNSW and	 the Agency rather than	 user
specific	 authentication/authorisation.

3.1.6 Auxiliary Capability
Supporting the	 overall architecture	 are	 a	 number of supporting components specifically 	worth
noting are:

• Digital Asset Management Platform – for	 the management	 and provision of	 Digital Content	
to the Client	 UX Components.

• Cloudfron CDN – for	 the caching an high speed provision of	 digital content	 contained within
the DAM.

• AWS Database – for	 the storage of	 long term data across components and transactions.
• API Gateway – for	 the provision of	 the service layer	 abstractions

3.2 Context

Generic Transaction
DMZ Secure	 Zone DMZ

External Capability Agency Services Client Services Transaction Logic SNSW Services SNSW Value	 Add User Experience

Transaction
Channel 1 UX

Agency Transaction Logic

Common Function
C

Common Function
A

Agency
ESB

Common Function
B

External
Function

Transaction
Channel 2 UX

Transaction
Channel 3 UX

Digital
Asset
Mgmt

AP
I	 G

at
ew

ay

AP
I	 G

at
ew

ay

CD
N

AP
I	 G

at
ew

ay

IDP

Ver: 1.2 12

External Capability Agency Services Client Services Transaction Logic SNSW Services SNSW Value	 Add User Experience

AP
I

AP
I

Transaction
Channel 1	 UX

(CSR)
Agency Transaction Logic

Common Function
C

Common Function
A

Agency
ESB

Common Function
B

External
Function

Transaction
Channel 2	 UX

(Digital)

Transaction
Channel 3	 UX
(Mobile)

Digital Asset
Management

Login UX IDP

LDAP/AD

MyAccount

PSP	 TX PSP	 UX

AP
I

Bank

AP
I

AP
I

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 		

 	 	
 	 	
 	 	
 	 	
 	 	
 	 	
 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	
 	 	 	

	

			 	 	 		

	
	 	

	 	

	 	

	

	 	

	 	 	 	 	

	

	

	
	

	
	

	 	

	

SNSW Omni Channel Reference Architecture

4 Detailed Architecture
4.1 Overview
The Omni Channel Reference Architecture decomposes the solution	 into	 seven	 distinct layers.

• User Experience

• Client Services
• Transaction Logic
• SNSW Services
• Value Add
• Agency Services
• External Capability

With a given transaction supporting multiple distinct Client Channels, and leveraging existing
technology platforms such as:

• PSP	 – Payments
• IDP / 	MyAccount – Identity 	Management

Secure	Multi Channel Transaction with	DAM and Payment

DMZ Secure Zone DMZ

Ver: 1.2 13

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	

	
	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

SNSW Omni Channel Reference Architecture
4.1.1 Component Deployment Model
The physical deployment is different to the conceptual model presented in the previous section.

The new architecture	 solution is 	based 	on a 	componentised 	microservice 	architecture where
components	 are built and deployed into PCF which in turn resides	 in AWS.

Within AWS is the PCF environment. This environment is split into two sections:

- External PCF	 – Components that are public facing (outside the SNSW Firewalls)
- Internal	PCF – Components that are internally facing (inside the SNSW Firewalls)

The main difference between an External and Internal PCF	 component is the Routing Path through
the PCF Load Balancers. Any component that is Externally facing	 has an External Routing	 Path (ie	
https://unify.pcf-ext.service.nsw.gov.au). Any component	 that	 is not	 explicitly External Facing is
internal	facing 	and 	has 	an 	internal	 Path (ie	 https://unify.pcf.service.nsw.gov.au).

Internally 	Facing 	PCF 	components 	can 	only 	be 	accessed 	via 	the 	API	Layer. 	The 	API	Layer 	exposes 	the
internal	components 	to 	the 	external	Clients 	via a 	secure API gateway (where required). Thus all
interaction 	between 	an 	External	PCF 	component 	and 	an 	Internal	PCF 	component is 	via 	the 	API	Layer.

The API Layer applies and enforces security and routing. It enforces which components can be
accessed by which clients.	

Within the AWS environment are some specialist services that specifically reside outside the PCF
environment (by design). Primarily:

- Permanent DB – For storage	 of secure	 records
- Digital Asset Management – For the	 provision of static data.

The DAM resides behind a	 high speed AWS	 Data	 Cache (CDN) known as Cloud Front.

There is still integration to the existing SNSW Infrastructure via	 Gov DC. This allows the PCF/AWS	
platforms to	 leverage the existing and	 legacy implementations and	 services (such as	 Identity	
Management, and Integration to existing agency and systems such as CRM).

With the integration to downstream agencies, there are two approaches. Integration through an
existing	 API exposed through the	 legacy SAG/ESB environment (depicted below), or integration
directly to	 an	 Agency API exposed	 through	 the Apigee API Layer (not depicted	 below).

Thus the physical implementation can be depicted:

Ver: 1.2 14

https://unify.pcf.service.nsw.gov.au
https://unify.pcf-ext.service.nsw.gov.au

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	

	

	 	 	

	 	 	

	
	

	
	

	
	

	 	 		 	 	 	

	 	

	 	

	

	

	

	

	

	

	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	

SNSW Omni Channel Reference Architecture

Gov	 DC Environment

AWS Environment

Internal Facing PCF Environment

External Facing PCF Environment

Transaction
Channel 1	 UX

(CSR)

Transaction
Channel 2	 UX

(Digital)

Transaction
Channel 3	 UX
(Mobile)

Transaction Logic Common Function
C

Common Function
A

Common Function
B

Perm DB
Storage

Digital Asset
Management

IDP

Agency Environment

Agency System

User

SalesForce	 CRM

Apigee API	 Layer

Agency API	 Layer

SAG/ESB API	 Layer

4.1.2 Design Considerations
When developing to this architecture the following design	 considerations should	 be observed:

• Client Resides in the	 DMZ – Thus no critical or sensitive data	 should be held in the Client.
• Use of the DAM – Any data likely to	 change over time should	 be held	 in	 the DAM.
• Security	 Applied at the API Layer – All access	 control to APIs	 should be handled in the API

layer.
• Light Weight Pipes – No functional capability should be developed in the API layer.

Ver: 1.2 15

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		

SNSW Omni Channel Reference Architecture
• Transaction	 Identification – All interactions across a transaction	 should	 utilise the same

Transaction Id.
• Logging – All inputs, outputs, and	 errors for any Web	 Service should	 be logged.
• Logging Source – All client machine identifying information	 should	 be logged.
• Logging Metrics – All Web	 Service Transaction	 Times should	 be logged.
• Operational Data – All operational data should	 be held	 in	 a transaction	 operational data

store.
• Scalability	 – All components can	 be independently scaled	 to	 improve performance.

4.2 User Experience Components
The User Experience Component provides a	 physical User Experience on a	 specific transaction. The
capability	 of the User Experience Component will greatly	 depend on the capability	 provided by	 the
underlying transaction	 component and	 the needs of the Customer.

The User Experience Component is intended to be light weight (throw away) with little scope for	
complex	 logic	 or business	 processing (all business	 processing is	 to occur in the Transaction Logic).

The intent is that the UX	 is fast to build, quick to deploy, independent of anything else, and so easy
to replace. The UX Component	 is technology agnostic, in	 that one UX	 Component has no	 relationship	
to the next.

Where UX specific capability is required, this should be developed into the UX Component and not
the Transaction Logic.

To provide consistency across UX	 Components a	 DAM is provided and able to be leveraged. The
DAM provides JSON	 APIs to allow access to content stored in the DAM. The amount a UX
Component leverages the DAM is up	 to	 the developers of the component. Typically content that is	
expected to change	 over time, and does not impact the	 delivery of the	 capability should be	 sourced
from the DAM, such as Help Text, Welcome Messages, Terms & Conditions, even Style Sheets.

Where the UX Component requires access to secure capabilities	 or services	 the UX Component must
Authenticate the User against SNSW’s IDP.

The UX	 Component resides outside the Secure Zone in SNSW, in the DMZ, as such it must be
considered to be “compromised” at all times	 from a security	 perspective. The UX Component
therefore must	 not	 contain any secure keys, passwords, or	 processing.

The UX	 Component will typically integrate to the Transaction Logic via	 the API Layer utilising only the
Client Services exposed	 by the API Layer. This integration	 is via REST	 Web Services.

4.3 Transaction Logic Components
The Transaction Logic Component utilises a	 number of Agency Services, and Value Added Services to
complete a transaction for the calling client.

The Transaction Logic Component provides a	 centralised processing	 capability	 for the	 transaction
being undertaken. Typically each	 transaction	 will operate in	 its own	 independent Transaction	 Logic
Component. Typically each	 Transaction	 Logic Component will provide a number of REST Web	
Services to allow execution of the	 transaction.

Ver: 1.2 16

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	

 	 	 	
 	
 	 	
 	 	 	 	
 	 	
 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 		

	 	 	 	 	 	 	 	 	 	 	 		

 	 	 	 	 	 	 	
 	 	 	 	
 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
		

	
		

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	

 	 	

SNSW Omni Channel Reference Architecture
The Transaction Logic Component is intended to be channel agnostic. No web service should be
offered	 that	 requires knowledge of	 the calling client	 or	 channel. Typically web services will follow a
similar process.

• Get Setup Data
• Initiate a 	Transaction

• Validate Data

• Take a	 Payment (via	 the PSP)
• Complete Transaction	 with	 Agency

• Generate a Receipt

While the exact steps offered for any specific transaction will vary, the overall flow is expected to be
similar across	 transactions.

There should be some underlying consistent behaviour across all Transaction Logic Components.

• Generation and Use of a Transaction Id
• Logging	 of Inputs and Outputs
• Logging	 of Metrics

A	 Transaction	 Id	 should	 be generated	 at the start of processing any transaction, and	 passed back and	
forth across all subsequent	 calls relating to that	 transaction to allow for	 tracking and logging.

The Transaction Logic Component is intended to be light weight and stateless. There should be little
to no data storage required. Where data is persisted it should be in one of two forms:

- Long	 Term Audit Data – Stored into a	 permanent external data	 store
- Short Terms Operational Data	 – Stored into a	 temporary data	 store

The Long Term Audit Data is write only data stored	 into	 a centralised	 DB	 in	 AWS hosted	 outside of
the PCF environment. This data is intended to be held past	 the life of	 the transaction component.

The Short Term Operation Data	 is read/write data	 stored into a	 local DB generated within PCF	
(though hosted in AWS). This data is only relevant	 to the transaction being executed or	 for	 a short	
time afterwards.

4.4 Value Added Components
The Value Added Components provide shared cross transaction services that can (if needed) be used	
by any Transaction	 Logic Component.

The Value Added Component is a	 headless web service accessed only via	 a	 limited set of Rest Service
APIs.

Internally 	the 	component is 	intended 	to 	be a 	stateless 	system 	that 	provides a 	single 	targeted
capability.

There	 is only expected to be	 a	 relatively small number of Value	 Added Services (things Service	 NSW
adds to a	 given transaction).

Currently the following Value Added	 Services are either in	 place or underway:

Existing VAS	 Components

• Transaction Logging

Ver: 1.2 17

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

 	 	
 	
 	
 	 	
 	
 	 	
 	 	
 	 	
 	 	
 	 	
 	

	 	

 	
 	 	
 	
 	
 	
 	
 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	
	 	 	 	 	 	 	 	 	 	

SNSW Omni Channel Reference Architecture
• Metric Logging

• Receipting

• SMS	 Messaging

• Email Messaging
• Encryption/Decryption

• Case Management
• Customer Management
• Payment Management
• JWT Management
• Transaction Configuration

• File	 Writer

Planned VAS	 Components

• Caching

• Error Mapping

• File	 Reader
• Image 	Store
• Signature	 Store

• Pause/Resume

• Proof of Identity

4.4.1 Transaction Logging

The log is “Write Only”, where data	 can only be added to the log, never updated, modified or
deleted.

In 	the 	initial	deployment 	the 	logs 	are 	write 	only, 	with 	no 	capability 	for 	read. 	This 	protects 	any	 data
held	 within	 the log as there are no	 enabled	 “read” functions to	 access the data.

In 	future 	releases 	data 	held 	within 	the 	log 	file 	will	need 	to 	be 	encrypted. 	Particularly if 	transactions
are	 logging sensitive	 or personal information. In this situation	 the core metadata may remain	
unencrypted, allowing access, sorting, and	 analysis, while the data can	 be encrypted, thus protecting
it 	against 	unauthorised 	access.

In 	the 	Transaction 	Log 	where 	the 	log is 	required 	to 	store a 	document 	as 	part 	of 	the 	log, 	the	
document is split from the log and	 stored	 in	 a separate table. Hence one call to	 the Tx Log may result
in 	two 	different 	table 	entries.

The mechanism used for storage of the log data	 itself is a	 MS	 SQL Server DB held in AWS.

4.4.2 Metrics Logging
Metrics Log – is 	only 	associated 	with 	the 	timing 	and 	execution 	of 	transactions, 	and 	should 	have
recorded in it	 the start	 and end time of	 a transaction through any key component	 of	 the system.

The log is “Write Only”, where data	 can only be added to the log, never updated, modified or
deleted.

In 	the 	initial	deployment 	the 	logs 	are 	write 	only, 	with 	no 	capability 	for 	read. 	This 	protects 	any 	data
held	 within	 the log as there are no	 enabled	 “read” functions to	 access the data.

Ver: 1.2 18

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

		

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

SNSW Omni Channel Reference Architecture
In 	future 	releases 	data 	held 	within 	the 	log 	file	 will need to be	 encrypted. Particularly if transactions
are	 logging sensitive	 or personal information. In this situation the	 core	 metadata	 may remain
unencrypted, allowing access, sorting, and	 analysis, while the data can	 be encrypted, thus protecting
it against unauthorised access.

The mechanism used for storage of the log data	 itself is a	 MS	 SQL Server DB held in AWS.

4.4.3 Receipting
The receipt generator takes input from the calling transaction and converts this input into a	 Service
NSW PDF based receipt (using SNSW letterhead	 and	 copy etc).

The mechanism used for generation of the PDF	 is currently under investigation and still to be
determined.

The result of the process is that a	 PDF	 file is stored in local storage against the Customer and
Transaction, and returned to the calling transaction.

Where a copy of a receipt is requested, a previously stored receipt is retrieved and returned to the
calling transaction.

The mechanism used for storage of the receipt data	 itself is through a	 MS	 SQL Server DB held in
AWS.

As the receipt may record	 sensitive and	 personal information	 the data held	 in	 the receipt data store
may require encryption.

4.4.4 SMS
The SMS	 Notification component allows the calling transaction to send SMSs to the Customer.

The mechanism is based on sending the SMS to a known Mobile Number.

SMSs are	 sent via	 the	 existing Twillio Gateway.

4.4.5 Email
The Email Notification component allows the calling transaction to send emails to the Customer.

The mechanism is based on sending the email to a	 known email address.

Emails are sent via	 the existing SendGrid Gateway.

4.4.6 Notification
This component allows the sending of Messages to the Customer based on the Customers existing
profile.

The component should be passed the Message, Transaction Type, and the Customer	 Id, where it	
should lookup the Customer within Service NSW, determine the Customers	 Messaging Preference
(Email, SMS, Both, None)	 for	 the given Transaction Type, and send the message using that	
preference.

4.4.7 Encryption / Decryption
The encryption capability allows the encryption and decryption of	 data stored in secure data stores.
The services offered are:

Ver: 1.2 19

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

 	 	
 	 	

	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 		

	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 		

	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

SNSW Omni Channel Reference Architecture
• Encrypt Data
• Decrypt Data

The algorithm used for Encryption/Decryption will be specified by the security team.

The component does not store the encrypted data, it is up to the	 calling	 transaction to store	 the	
encrypted/decrypted result if needed.

4.4.8 Case Management
The Case Component allows the maintenance (search, read, creation, update, delete etc) of Case
Data.

Case Data is the domain	 of SalesForce, however management and display	 of this	 information can
occur within	 any transaction, or dashboard.

4.4.9 Customer Management
The Customer Component allows the maintenance (search, read, creation, update, and
delete/terminate) of customer data.

There are many sources of Customer Data, which	 can	 generally be partially sourced	 from SNSW
directly, or from each	 of the target agencies. This component allows the retrieval (and	 management)
of Customer Data both	 known	 to	 SNSW and	 a specific agency in	 a uniform way.

4.4.10 Payment Management
The Payments Component allows the collection of CC and Cash payments over the counter (or
digitally) through	 the OneGov GLS Payment System.

The Component is required to support Payments, Refunds, and Reconciliation.

On completion of a payment the	 component should redirect the	 user to complete	 the	 transaction.

It is 	envisaged 	that 	the 	payment 	component 	will	utilise 	the 	existing 	PinPads 	(and 	Cash 	Draws) 	on 	the
CSR	 Work Station, and	 not require the manual entry of CC	 Details.

4.4.11 JWT Management
The generation of JWT	 Security Tokens should be handled centrally to ensure that all transactions
utilise the same approach	 for Security Management.

The component should allow the generation and retrieval of JWTs.

4.4.12 Transaction Configuration
The Transaction Configuration component allows the retrieval of Transaction Setup data	 (such as
Drop Down List values).

This information can be sourced from different locations depending on the transactions
requirements.

For Service	 NSW related data, this information is 	sourced 	from a 	temporary 	data 	store.

For Agency related data, this information is sourced from the	 downstream agency.

Ver: 1.2 20

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 		

	

	 	 	 	 	 	 	 	 	 	 	 		

 	 	 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	

SNSW Omni Channel Reference Architecture
On calling this capability the caller must supply the transaction type to allow the identification of the
correct setup data.

4.4.13 File Writer
Allows the writing of a file (Text, CSV, XML, JSON, Doc, PDF etc) to	 a defined	 location	 (S3 bucket).

4.4.14 File Reader
Allows the reading of a file (Text, CSV, JSON, XML, PDF, Doc etc), from a defined	 file location	 (such	 as
an S3	 bucket).

4.4.15 Caching
Caching allows a transaction	 to	 take advantage of a temporary storage space (a cache).

• Data can be pushed into the Cache.
• Data can be retrieved from the Cache.
• Data is segregated within the Cache based on Transaction Type.

Note: the cache will be provisioned 	through 	temporary 	storage, 	and 	so 	can 	go 	unavailable 	without
notice.

Note: the cache is not intended to support wider "Search" or "Update" capability, simply
write/retrieve based on a Transaction Type and Id.

4.4.16 Error Mapping
The Error Mapping component maps	 a provided (Agency) error message to a Customer Centric	 Error
Message. It relies on a defined set of error message maps which is stored in a temporary database.

When the component receives a request the calling Transaction Logic component should provide the
Error Message, Error Id, and Source System/Transaction. If an existing Map for this error message is
found in the Mapping database then the associated error	 message is	 returned. If no map is	 found in
the Mapping database then a default	 message is returned (the equivalent	 of	 “Oops something went	
wrong please try again later”, and a new	 entry is added to the database for later remediation).

4.4.17 Image Store
The image store contains	 encrypted copies	 of the Customer Photo.

The intent is that this image is reusable across all customer interactions and transactions where a	
photo	 is required.

4.4.18 Signature Store
The signature store contains encrypted copies of the Customer Signature.

The intent is that this signature is reusable across all customer interactions and transactions where a	
signature is	 required.

Ver: 1.2 21

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	

 	
 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	

 	 	
 	 	
 	 	
 	 	
 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	
 	 	
 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	

	

	 	 	 	 	 	 	 		

SNSW Omni Channel Reference Architecture
4.4.19 Pause / Resume
Provides the	 capability to Pause	 and Resume	 a	 transaction mid flight.

This capability supports the services:

• Pause	 Transaction
• Resume Transaction

It is 	intended 	to 	be 	used 	for 	transactions 	where 	there is a 	high 	likelihood 	of a 	“walkout” 	such 	as
during a manual test (where there is a natural break in	 a transaction), before a payment is made,
where the customer can leave and return at a later date.

The	 component should allow the	 transaction state	 to be	 written to temporary storage	 and retrieved
at a	 later date. On retrieval the	 transaction data	 should be	 removed from the	 temporary storage.
Equally the temporary storage should only house data	 for a	 maximum	 set period (suggest 5 days).

In 	writing 	the 	transaction 	to 	the 	temporary 	storage 	some 	core 	metadata is 	required 	outside 	that 	of
the transaction data to allow correct	 identification at	 a later	 date. This includes:

• Transaction Id
• Transaction Type
• Transaction Date
• Transaction Name
• Customer Id

4.4.20 Proof of Identity
POI is the	 conglomeration of a	 proof of identity function, where	 a	 Customers Image, Signature, and
Identity 	credentials 	can 	be 	stored 	by 	SNSW 	and 	used 	at a 	later 	date in 	other 	applications. 	Thus
allowing applications requiring POI to	 be performed	 online, and	 streamlining the process for future
CSR	 transactions.

Note this can not be done without the customers consent.

The function relies on creating secure data	 stores, so relies on Encryption, and storage of	 Image,
Signature	 and POI information.

The POI component should store the identity level that the Customer has been certified to, these
being:

• Uncertified
• Document Certified
• Visually Certified

And	 the storage of the Point System associated	 with	 the certification.

This data	 must be encrypted prior to storage, and decrypted on retrieval.

4.5 Services
The Microservice Architecture relies on utilising Web Services.

Ver: 1.2 22

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	

 	 	
 	
 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 		

	 	 	 	 		

SNSW Omni Channel Reference Architecture
In 	this 	architecture 	approach 	the 	Web 	Services 	are:

1. Light Weight
2. Stateless
3. Encapsulated

That	 is the web service interfaces are simple, independent, and self	 contained. In this environment	
they are all REST Web Services.

There are three primary groups of Web Services:

• Customer Services – Services exposed by SNSW to an external Customer UX component.
• Agency Services – Services exposed by a	 downstream Agency to SNSW

• Value Added Services – Internal	SNSW 	capability 	used 	by 	Transaction 	Logic 	Components.

All the web	 services are intended	 to	 be Stateless.

All the web	 services are intended	 to	 be REST Web	 Services.

4.5.1 Customer Services
Customer Services provide the entry point for a specific channel (or external client) to	 call a
Transaction provided by Service NSW.

The Customer Services is required to implement B2C authentication on all sensitive Web Services,
where the Web Service must check the Customer has Authenticated.

The Customer Service must also check that the data	 being accessed is appropriate to the Customer
who has Authenticated. That is Customer A has authenticated as A but attempts to access Customer
B’s data (this should	 be prevented).

The exact services exposed to the Client via	 a	 Customer Service will greatly depend on the
underlying Transaction	 being exposed.

4.5.2 Agency Services
Agency Services provide access by internal SNSW components (specifically Transaction	 Logic
components) to access	 agency	 capability.

The Agency Service is required to implement B2B security working in conjunction with the
downstream agency to	 implement a TLS style of security.

The Agency Service is also require (where	 necessary) to translate	 the	 External Agency APIs to an
internal	REST 	API.

4.5.3 Value Added Services
Value Added Services provide access to internal Value Added Components.

These services are completely internal to SNSW and so able to be accessed from Transaction Logic
via the API layer directly. As these components are not exposed to external systems there is no
security requirements	 on accessing the APIs.

4.6 Security
Security is applied at multiple	 levels.

Ver: 1.2 23

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 		
 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	

 	
 	 	

SNSW Omni Channel Reference Architecture
4.6.1 Client API Security
Client API Security requires the	 use	 of OAuth credentials. Where	 a	 Client Calling	 Component is
required to Authenticate the User	 prior	 to making calls against	 the API layer	 to access Client	
Services.

Authentication	 of the client will vary depending on	 if the Client is an	 External Customer, or an
internal	Staff 	Member.	

• External Customers are authenticated against their credentials in LDAP.
• Internal	Staff 	are 	authenticated 	against 	their 	credentials in 	AD.

Once the client is authenticated, a secondary check is required at the API layer to	 ensure the Client is
only accessing their own	 data. This is critical for Public Customers, where it may be possible to	 Login	
as Client A, but then try and access data	 for Client B (by say fudging data	 calls). The	 API layer must
protect against this kind	 of data tampering.

4.6.2 Agency API Security
Agency API Security requires the use of	 mutual exchanges certificates. Where data is transferred
over a secure channel to	 the agency using SSL, and	 TLS. In	 this scenario	 data is transferred	 in	 a B2B	
transfer	 protocol and so is Customer	 Agnostic.

4.6.3 Data Security
In 	Flight 	Data Security requires the use of	 encryption for	 all inflight	 public data channels using SSL.

At Rest Data Security only occurs in	 a limited	 number of scenarios. The PCF Architecture does not
support File System (file writing) so at rest data retention is	 limited.

The only significant data	 store in use is in relation to Audit and Metric Logging (Value Added
Services). These	 components provide	 Write	 Only access to an external Database	 in AWS. The	
External Database is contained within the SNSW environment and has	 no “Update” capability. Long	
term the payload elements of	 this data need to be encrypted where personal information is
involved.	At 	present 	this is 	not 	occurring 	due 	to 	the 	need 	to 	manage a 	bedding 	down 	process 	for
new application	 delivery. Once established	 Encryption	 of Personal Information	 should	 be enforced.

Some	 programs are	 continuing to write	 data	 to SalesForce	 in the	 form of Case	 Data. This information
is 	governed 	by 	the 	SalesForce 	data 	management 	policies.

4.6.4 Payment Fraud Detection
When executing transactions that require	 payments, the	 system verifies that the	 Transaction Id, and
Payment Id passed into the	 Transaction Logic Component match that held by the	 Payment System,
and that the	 valid correct amount has been collected prior to execution of the	 Transaction.

4.7 Auxiliary Capability
The following Auxiliary Capability extends the basic Microservice Architecture to extend and
enhance	 the	 capabilities of the	 overall platform.

4.7.1 Environments and Organisations
The Pivotal Cloud Foundry environment provisions two physical environments and multiple virtual
environments:

• Production
o External Rout

Ver: 1.2 24

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

 	 	
 	

 	
 	 	
 	

 	
 	 	
 	

 	
 	 	
 	

 	
 	 	
 	

 	
 	 	
 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

 	 	
 	 	
 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 		

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		

SNSW Omni Channel Reference Architecture
o Internal Rout

• Development
o Dev

• External Rout
• Internal	Rout

o Test
• External Rout
• Internal	Rout

o Integration 	Test
• External Rout
• Internal	Rout

o Load
• External Rout
• Internal	Rout

o PSM
• External Rout
• Internal	Rout

Any component provisioned	 with	 an	 External Rout will be accessible from the Public Internet, any
component provisioned with an Internal Rout will only	 be accessible from within the SNSW network.

Within these environments the components	 are grouped by	 Organisation. To date the Organisations
have been	 arranged	 by Platform and	 Project. With	 the intent being to	 share capability the
organisations now need	 to	 be arranged	 around	 the architecture:

• Channel Experience

• Transaction Logic
• Value Added Services

Channel Experience represents the components that are used	 to	 delivery the Customer Experience.
These are typically specific to a	 unique channel.

Transaction Logic represents the shared transactions that are accessible across all channels.

Value Added Services represents the set of Value Added Components that are shared amongst
Transactions.

4.7.2 Payments
With the introduction of a Microservice Architecture and the move away from a monolithic
transaction solution driven by SalesForce, there	 needs to be	 an examination of the	 method of
processing payments.

The current SalesForce solution for processing payments, relies on SalesForce storing and holding
state, while the payment is	 processed via the PSP system, and then re-executing	 the	 transaction
based	 on	 the saved	 state. This is in	 essence a pause/resume process in	 the transaction	 processing
flow.

With the introduction of a Microservice Architecture there is no state held by the transaction
processing system. The transaction	 processing system is no longer a	 monolithic application, rather a	
multi threaded microservice with no perceived state.

Ver: 1.2 25

SNSW Omni Channel Reference Architecture
The current PSP	 implementation relies on state being held by the transaction processing system to
ensure	 fulfilment and reconciliation. Without state	 being	 held by the	 transaction processing	 system
there is a high likelihood of	 discrepancies and failures in the processing of	 payment	 transactions,
causing increased load on reconciliation processes.

Storing state	 in a	 large	 distributed microservice	 architecture	 is undesired, as it impacts all
transactions reduces reliability and stability of	 the overall network.

4.7.2.1 Solution Overview
In a 	general	non 	payment 	transaction, 	the 	user 	(Customer 	or 	CSR) 	interacts 	with a 	front 	end 	screen
(User	 Experience)	 to preform a	 transaction. The	 User Experience	 communicates with back end
Transaction Logic to perform the transaction with a	 downstream Agency. In the process of executing
a	 transaction, the	 transaction is logged to a	 system of record. There	 is no state	 held by any
component within SNSW, and so the solution is	 highly	 scalable and performant.

Transaction Non	Payment	 Based	 Process
External Agents

Transaction UX Agency

User

Transaction Logic

Log Transaction Transaction Log

Execute	 Transaction Execute	 Transaction Execute	 Transaction

When moving to a transaction involving a Payment, the overall process should remain consistent,
stateless.

The current proposed solution is for the Transaction UX	 to redirect to the Payment UX, allow the
User to provide their payment details, process the payment via the PSP and then return to the
Transaction UX.

Payment	 Based Process Transaction

External Agents

Payment

Execute	 Transaction
Transaction UX Agency

User

Transaction Logic

Log Transaction Transaction Log

Execute	 Transaction Execute	 Transaction

PSP	 UX Bank PSP	 TX
Take	 Payment Take	Payment Take	 Payment

Re
qu

es
t	 P

ay
m
en

t

Re
tu
rn

 R
es
ul
t

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		

	 	

	 	

	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	

	 	

	 	

	
	

	

	

Ver: 1.2 26

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
		

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 		

	
	

	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 		

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	

	 	 	 	

	 	

	

	

	

	

	
	

	

	

	 	

	

	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

SNSW Omni Channel Reference Architecture
On the whole this process seems sound. However when switching	 from the	 Transaction UX to the	
PSP	 UX there	 is a	 real chance	 that the	 return call is never completed from the	 PSP	 UX (say the	
Customer closes their browser), thus leaving the system in	 a state where a Payment is Taken	 for a
Transaction that is never executed.

The Payment team have realised this deficiency and also returned a	 separate “Notification” of
payment (not shown) however if control is never returned	 to	 the Transaction	 UX	 (say the Customer
closes	 their browser) there is	 nothing for the Notification	 service to	 call that knows of the
transaction.

It 	was 	proposed 	that a 	two 	phase 	commit in 	the 	Payment 	System 	would 	resolve 	this 	issue, 	however
time does not	 permit	 such a solution, and there are outstanding technical reservations as to how
best to	 implement.

It 	was 	also 	proposed 	that 	storing 	state in 	the 	transaction 	would 	resolve 	this 	issue, 	however 	this
invalidates 	the 	stateless 	microservice 	architecture 	approach 	now 	being 	adopted, 	and 	would 	place
significant overhead on each transaction being delivered	 (as there are over 1200 transactions to	 be
delivered).

4.7.2.2 Implemented Solution
The implemented solution makes use of the Payment Solution as it exists today, but leaves the
transaction system (in effect)	 stateless.

The proposal is to introduce a	 new ValueAdded	 Service for Payment Processing into	 the
Microservice Architecture. This service would maintain state of a transaction payment outside the
flow of	 the transaction, while a second periodic process would then use this information to reverse
any erroneous transactions inter	 day.

Transaction UX Agency Transaction Logic

Tx Payment Log Tx Payment Log

PSP	 TX PSP	 UX Bank

Reversals

Transaction

Value	 Added Payment Svc

PSP

External Agents

High	Level Payment	 Process

Ex
ec
ut
e	

 Tr
an
sa
ct
io
n

Re
qu

es
t	 P

ay
m
en

t

Re
tu
rn

 P
ay
m
en

t

M
ak
e	
Pa
ym

en
t

Make	Payment

Execute	 Transaction Execute	 Transaction

Make Payment

Reverse	 Payment

U
pd
at
e	

 Lo
g

N
ot
ify

 o
f P

ay
m
en

t
Re

ve
rs
e	

 Pa
ym

en
t

Ch
ec
k
St
at
e

Update	 Log

Check Status

Log Transaction Transaction Log

From a	 transaction processing perspective	 the	 new Payment Log would be	 a	 write	 only log, where	
each new transaction involving	 a	 payment would be	 written to, logging	 only core	 information (such

Ver: 1.2 27

SNSW Omni Channel Reference Architecture
as Tx Id,	Payment 	Id,	and 	Tx 	Status). 	As 	this 	is a 	write 	only 	pattern 	no 	state 	is 	held 	by 	the 	Transaction
logic.

When the PSP accepts a payment, a Notification is sent to the calling system. In this situation all
notifications would	 be routed	 to	 the same Payment Log. This message would	 also	 include the Tx Id,
and Payment Id, however would not contain the	 Tx Status.

Thus over time the Tx Payment Log would contain a	 list of all completed transactions, along with
their	 payments, and equally a list	 of	 all transactions that	 were paid for	 but	 never	 executed (those
without a valid status).

Periodically a	 Reversal process would run, searching the	 Tx Payment Log for incomplete	 transactions
(where a payment	 was made but	 no transaction was completed)	 and using the existing PSP	 services
revers the payment.

Transaction UX Agency Transaction Logic

Tx Payments Log Tx Payment Log

PSP	 TX PSP	 UX Bank

Reversals

A

J

B

C

D E

F

H

I

K

L

1

3

4

5

G

Browser	
Session

A	 – Execute	 Transaction

B	 – Start Payment Process
C	 – Enter Payment Details
D	 – Take	 Payment
E	 – Take	 Payment

K	 – Notify of Transaction Payment
L	 – Record Payment Id

1	 – Read Uncompleted Transactions
2	 – Read Uncompleted Transactions
3	 – Reverse Transaction Payment
4	 – Reverse Transaction Payment
5	 – Update Uncompleted Transactions
6	 – Update Uncompleted Transactions

2 6

F	 – Return Payment Complete

G	 – Complete	 Transaction

H	 – Complete	 Transaction

I	 – Update	 Transaction Status
J	 – Update	 Transaction Status

Transaction

Value Added Payment Svc

PSP

External Agents

Payment	Process	 Flow

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 		

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 		

	

	 	

	 	 	 	

	
	 	 	
	 	 	
	
	

	 	 	 	
	 	 	

	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	

	 	 	
	
	
	 	
	 	

	 	 	

	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		

Because the payment is reverse inter day, the payment is reversed	 with	 the bank and	 no	 impact is
made on the user.

Equally because there has been a	 failure (presumably) with the Transaction UX (such as closing the
browser) before the transaction	 is executed	 there is no	 opportunity to	 leave the customer in	 an	
invalid 	state 	believing 	the 	transaction 	complete 	and 	unpaid.

This solution should simplify significantly reconciliation as only valid paid and processed transactions
would now	 be held by the system and PSP.

4.7.2.3 Implementation and Interfaces
To implement the solution requires the introduction of a	 new Transaction Payment Log (Value
Added	 Service) and	 associated	 Data Store, along with	 a periodic Reversal component.

Ver: 1.2 28

APIs and Objects

Fulfil Tx

SNSW Omni Channel Reference Architecture

Transaction Logic

Reversals

Tx Payment
Reconciliation

Update	 Tx State

Update	 Tx Payment State

Get Incomplete	 Tx

TX Payment Log

PSP	 TX

Tx Payment Record

Tx Id
Payment Id
Tx Status
Payment Status
Last Updated

Agency

Bank

Transaction

Value	 Added Payment Svc

PSP

External Agents

Reverse	 Paym
ent

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	

	 	

	

	

	 	

	

	 	

	 	

	
	

	
	

	

	 	

	

	 	

	

	 	 	 	 	 	 	 	

 	 	 	
 	 	 	 	
 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

		

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

The Payment Log should support the following services:

- Update Tx State
- Update Tx Payment State
- Get Incomplete Tx

Update Tx State should allow the Transaction Logic to update the state of a payment transaction,
that	 is update Tx Id, Payment	 Id, Tx Status, Payment	 Status, and Last	 Updated Flag. The intent	 is that	
this service is only called from the Transaction Logic component.

Update Tx Payment State should allow the PSP (and Reversal component) to update the state of a
paid	 transaction, that is update the Tx Id, Payment Id, Payment Status and	 Last Updated	 Flag.

Get Incomplete Tx should return to the calling system the list of any transactions that are paid	 but
have no	 Tx Status. That is any record	 that has a Tx Id, Payment Id, and	 Payment Status (of Paid), but
no	 Transaction	 Status.

The Reversals component should execute periodically inter day (say hourly) and query the Payment	
Log	 for any	 incomplete transactions. Where a transaction remains incomplete over an extended
period	 (say an	 hour) it is deemed	 to	 be in	 failure and	 reversed	 through	 a call to	 the PSP Reverse
Payment service, and the	 status of the	 reversal should 	be 	recorded in 	the 	Payment 	Log.	

Thus hourly a	 process will run that will reverse any outstanding payments that are more than an
hour old. This will address the issue of a payment being made and	 the transaction	 not being fulfilled.

4.7.2.3.1 Alerts
When reversing	 transactions consideration needs to be	 given to failure	 states. If (for any	 reason)
there is a failure in the prime transaction processing flow (say agency system failure)	 it	 may be

Ver: 1.2 29

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		

	 	 	 	 	 	 	

 	 	 	 	 	 	
 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	

	 	 	 	

	 	

	

	

	

	
	

	

	

	 	

	

	

	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 		

	 	 	 	 	 	 	 	 	 		

SNSW Omni Channel Reference Architecture
undesirable to	 reverse a significant number of transactions, simply because the agency system is
down. Thus limits need	 to	 be introduced	 to	 the system.

The System should not reverse payment where:

1. There are over 10	 records requiring reversal.
2. There are over $1000	 worth of payments requiring reversal.

Note: the exact value above can	 be adjusted.

In 	both 	scenarios 	an 	email	should 	be 	generated 	(by 	the 	Reversal	component) 	to 	Support 	warning 	of
a	 potential issue, and requiring manual intervention for reversal.

4.7.2.4 Fraud Prevention
When executing a transaction that involves a payment, a	 limited set of information is passed from
the UX to the Transaction Logic component. The Transaction Logic Component	 needs to verify that	
the information passed from the UX is the same as that	 taken by the PSP. That	 is someone isn’t	
trying to execute Transaction 27	 with a	 cheaper payment from Transaction 16	 (for example).

The Transaction Logic call the PSP	 service “Get Payment Details” and passes in the Transaction Id,
and Payment Id, and if they are	 a	 matched pair the	 PSP	 will return the	 Payment Details	 (including the
value paid). If the value paid matches the transaction amount required then the transaction will be
processed.

Transaction UX Agency Transaction Logic

Tx Payment Log Tx Payment Log

PSP	 TX PSP	 UX Bank

Reversals

Transaction

Value	 Added Payment Svc

PSP

External Agents

Ex
ec
ut
e	

 Tr
an
sa
ct
io
n

Re
qu

es
t	 P

ay
m
en

t

Re
tu
rn

 P
ay
m
en

t

M
ak
e	
Pa
ym

en
t

Make	Payment

Execute	 Transaction Execute	 Transaction

Make Payment

Reverse	 Payment

U
pd
at
e	

 Lo
g

N
ot
ify

 o
f P

ay
m
en

t
Re

ve
rs
e	

 Pa
ym

en
t

Ch
ec
k
St
at
e

Update	 Log

Check Status

Log Transaction Transaction Log

Ge
t	P

ay
m
en
t	D

et
ai
ls

4.7.3 Sensitive Information Handling
Certain	 data processed, and	 held, by Service NSW is sensitive in	 nature, and should be	 treated with
the utmost	 care and concern.

Security policies are	 in place	 for handling sensitive	 information which must be	 adhered to.

Ver: 1.2 30

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	

	 	

 		
 		
 		
 		
 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	

SNSW Omni Channel Reference Architecture
In 	general though no Customer	 or	 Payment	 information should be held in a public facing
component, application or data store. Further there are few requirements	 where any	 form of SNSW
information 	needs 	to 	be 	held in a 	public 	facing 	component.	This 	should 	be 	kept in 	mind 	when
developing solutions.

For initial platform deployments, during HyperCare	 there	 is an advantage	 in not encrypting sensitive	
data to	 allow for monitoring and	 support. However this should	 never relax data handing to	 the point
that	 data can be compromised 	or 	made 	public.	Once a 	program 	exists 	HyperCare 	the 	Personal	and
Sensitive	 information should be	 encrypted and access removed.

4.7.3.1 Personal Data
Personal Data	 includes any kind of information that allows the	 public identification of the	 Customer,
such as:

• Name,
• Address,
• Phone,
• Email,
• DOB,

Public exposure	 of this sort of information would be	 extremely detrimental to the	 Customer, and a	
significant failing for Service NSW.

This information needs to be encrypted in all Logs and Database Records, and should 	never 	be 	held
unencrypted	 in	 other records. Where this sort of information	 is sourced	 from a downstream system,
such as	 SalesForce or and Agency system, the data should be managed by the source system, and
not stored	 by the Transaction Logic processing component.

Personal Data	 should always be	 encrypted in transit.

When this information is written to a log, such as is 	typical	 of a JSON record. In this situation the
data should	 be encrypted	 when	 written	 to	 the log:

Original Data:

{
"customerDetails":{

"customerId":"OLG_CAR_0010341",
"firstName":"John",
"lastName":"Smith",
"birthDate":"1970-11-01",
"email":"john.smith@hotmail.com",
"title":"mr",
"pensioner":false,
"address":{

"addressLine1":"10 Park Rd",
"addressLine2":"",
"postCode":"2210",
"state":"NSW",
"suburb":"PEAKHURST"

}
},
"paymentDetails":{

"pspReceiptId":"2QwR2v422436659",
"feeAmount":"207"

},
"petDetails":{

"microchipNumber":"900079000153309"
},
"transactionRef":{

"transactionId":"935618",

Ver: 1.2 31

mailto:email":"john.smith@hotmail.com

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	

	 	

	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

SNSW Omni Channel Reference Architecture
"transactionType":"SNSW-Registerpet",
"transactionDate":"2018-11-17T00:42:47.283Z"

}
}

Encrypted Data:

{
"customerDetails":{

"customerId":"CDS431f314f",
"firstName":"d435df231",
"lastName":"3421341324",
"birthDate":"541543245eda",
"email":"2453rfadr243r",
"title":"mr",
"pensioner":false,
"address":{

"addressLine1":"32142dswq41",
"addressLine2":"3124asfqwcs",
"postCode":"2210",
"state":"NSW",
"suburb":"PEAKHURST"

}
},
"paymentDetails":{

"pspReceiptId":"2QwR2v422436659",
"feeAmount":"207"

},
"petDetails":{

"microchipNumber":"900079000153309"
},
"transactionRef":{

"transactionId":"935618",
"transactionType":"SNSW-Registerpet",
"transactionDate":"2018-11-17T00:42:47.283Z"

}
}

Note as the data within the payload is JSON	 and so it a String, this data can be encrypted in place
while leaving the overall message structure. This allows Business Intelligence and Analytics to take
place on	 the overall data structure and	 meta data, such as Suburb, or Time.

Access to	 Customer Data should	 only ever occur via a Value Added	 Service, that way access to	 the
data is via an	 API which	 can	 be controlled, and	 monitored.

Encryption should be based on a	 two part key. The first part should be generic	 to Service NSW, so
that	 a reasonable minimum key is used. The second part	 should be specific to the Customer	 who
owns the data. The net result is that every customers data should	 be uniquely encrypted	 to	 that
Customer and	 only decryptable by knowing both the SNSW Key and how the Customer	 Key was
generated.

4.7.3.2 Image Handling
One of the future designs is to hold and reuse the Customers Image. While some Customer Images
are	 specific to the	 transaction (such as RMS) many situations exist where	 any (reasonable) image 	of
the Customer	 could be used. In this situation it	 is advantageous to the Customer	 to reuse a “Stock”
image 	of 	them, 	taken 	once, 	and 	then 	reused 	across 	various 	common 	(non 	sensitive) 	transactions.

To achieve this a	 repository of Customer Images is required, where all image data held in the
repository is accessible only via APIs (which therefor	 can be monitored and tracked), and where all
image 	data 	held in 	the 	repository is 	encrypted 	to 	the 	Customer.	

Ver: 1.2 32

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	 	 	
 	 	 	
 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

SNSW Omni Channel Reference Architecture
For an image	 to be	 used the	 Image	 must first be	 certified by	 a trusted source, typically	 in the initial
instance a 	Service 	NSW 	staff 	member 	(a 	CSR), 	who 	takes 	the 	photo 	and 	verifies 	that 	the 	photo is 	of
the Customer. Thus making the photo available for	 reuse elsewhere.

Encryption should be based on a	 two part key. The first part should be generic to Service NSW, so
that	 a reasonable minimum key is used. The second part	 should be specific to the Customer	 who
owns the data. The net result is that every customers data should	 be uniquely encrypted	 to	 that
Customer and	 only decryptable by knowing both	 the SNSW Key and	 how the Customer Key was
generated.

4.7.3.3 Customer Signature Handling
One of the future designs is to hold and reuse the Customers Signature Image. While some Customer
Signature	 Images are	 specific to	 the transaction	 (such	 as RMS) many situations exist where any
(reasonable)	 signature image of	 the Customer	 could be used. In this situation it	 is advantageous to
the Customer	 to reuse a “Stock” signature image, taken once, and then reused across various
common (non sensitive) transactions.

To achieve this a	 repository of Customer Signature Images is required, where all image data	 held in
the repository is accessible only via APIs (which therefor	 can be monitored and tracked), and where
all image	 data	 held	 in	 the repository is encrypted	 to	 the Customer.

For a	 Signature Image to be used the Signature Image must first be certified by a trusted source,
typically in the initial instance a Service NSW staff	 member	 (a CSR), who takes the photo and verifies
that the photo is of	 the Customer’s Signature. Thus making the signature image available for	 reuse
elsewhere.

Encryption should be based on a	 two part key. The first part should be generic	 to Service NSW, so
that	 a reasonable minimum key is used. The second part	 should be specific to the Customer	 who
owns the data. The net result is that every customers data should	 be uniquely encrypted	 to	 that
Customer and only decryptable	 by knowing both the	 SNSW Key and how the	 Customer Key was
generated.

4.7.3.4 Encryption/Decryption
Encryption and Decryption of data	 should be provided by a	 Value Added Service to encapsulate the
encryption process, and allow logging	 and monitoring 	of 	actions 	against 	the 	underlying 	data.	

The Encryption Algorithm should be expected to change over time to meet the security needs of the
day. The algorithm should	 always take into	 account three factors:

• Strength of the	 Algorithm

• Speed of Execution

• Protection and Generation of Keys

While the strength of the overall algorithm is important in protecting the underlying data, the
algorithm needs to operate	 in a	 real world environment, quite	 often in conjunction with real time	
transactions. So algorithms	 with intensive long running processing cycles	 should be avoided.

AES-256	 should be	 used for a	 default encryption standard. It has proved to be	 a	 tested and robust
algorithm, with programmatic support in most implementation languages.

The strength and generation of encryption keys determines how vulnerable	 any encrypted data	 is to
brute force decryption	 attacks if there is a data breach. That is if a malicious party does obtain	 a

Ver: 1.2 33

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	
 	 	 	
 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

 	 	 	 	 	 	
 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	

	
 	 	 	 	 	

 	 	 	 	 	 	 	
 	 	 	
 	 	 	

 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	

 	 	 	 	 	 	
 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	

	
 	 	 	 	

 	 	 	 	 	 	 	 	 	
 	 	 	
 	 	 	

 	 	 	 	 	
	

 	 	 	 	

SNSW Omni Channel Reference Architecture
copy	 of the underlying encrypted data, how easy	 is	 it for them to break	 the data, and	 also	 how much	
data do	 they obtain	 access to	 by any brute force hack. In	 simple terms the way to	 deter this sort of
attack is to encrypt different records with different keys. Ultimately a	 different key per record. Thus
forcing the brute force attack to be carried out	 every time for	 every record. The net	 effect	 is that	 a
large 	data 	breach 	becomes 	computationally 	expensive 	and 	therefore 	unlikely 	to 	be 	achieved.	

Generating a new key per record is impractical if each key needs to be maintained in an external key
store (for example). A suggested alternative is	 to use a single key (or limited set of keys) to ensure a
minimum	 complexity of key is involved, and then augment this key for each record (based on data
not held	 in	 the records metadata). For example	 the	 Transaction Name, Customer Name and	 DOB.
Thus in simple terms:

• Encryption Key =	 Service NSW Key +	 Customer Data
o Service	 NSW Key =	 A21dg34@34d65
o Customer Data = Pet Registry John Smith 01/02/1970

• Encryption Key =	 A21dg34@34d65	 +	 Pet Registry John Smith 01/02/1970

Now this still carries a weakness in that once a brute force attack determines the first key the
information in 	the 	key 	identifies 	what is 	required in 	subsequent 	keys 	(ie Transaction, Name and
DOB) to remediate this the Customer Data should	 also	 first be encrypted	 with	 a different Service
NSW Key to obscure it. Thus becoming:

• Step 1	 – Generate Encrypted Customer Data
o Service	 NSW Key 1	 =	 adfa324dca&6231cf
o Customer Data = Pet Registry John Smith 01/02/1970
o Encrypted Customer Data	 =	 gfd3241da314@#hcf

• Step 2	 – Generate Encryption Key
o Encryption Key =	 Service	 NSW Key 2	 +	 Encrypted Customer Data

• Service	 NSW Key 2	 =	 A21dg34@34d65
• Encrypted Customer Data	 =	 gfd3241da314@#hcf

o Encryption Key =	 A21dg34@34d65gfd3241da314@#hcf

With this approach even if a brute force attack is used, there is no visible evidence of the Customer
Data used to generate the key. However it is still possible to identify at least the common Service
NSW key component as this would be common across all keys. Thus a	 third step is required to
obscure the combined	 key. Thus becoming:

• Step 1	 – Generate Encrypted Customer Data
o Service	 NSW Key 1	 =	 adfa324dca&6231cf
o Customer Data = Pet Registry John Smith 01/02/1970
o Encrypted Customer Data	 =	 gfd3241da314@#hcf

• Step 2 – Combined	 Encryption	 Key
o Combined	 Encryption	 Key = Service NSW Key 2 + Encrypted	 Customer Data

• Service	 NSW Key 2	 =	 A21dg34@34d65
• Encrypted Customer Data	 =	 gfd3241da314@#hcf

o Combined	 Encryption	 Key = A21dg34@34d65 + gfd3241da314@#hcf

• Step 3	 – Obscure	 Encryption Key

Ver: 1.2 34

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

 	 	 	 	 	
 	 	 	
 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 		

	 	 	 	 	 		

 	 	 	
 	 	
 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

SNSW Omni Channel Reference Architecture
o Combined	 Encryption	 Key = A21dg34@34d65 + gfd3241da314@#hcf
o Service	 NSW Key 3	 =	 da#54dfa3213
o Obscured Encryption Key = ad%7h5^5gfdsal21ncJnLKBsha2341

This process renders the final encryption key to be meaningless across all brute force hacks	 on any	
record, making access to the underlying data being protected of	 limited value.

The above is provided as an example of the mechanism only, and can be greatly simplified during
implementation.	 It 	does 	however 	demonstrate a 	way 	forward 	where 	every record for	 a Customer	 is
encrypted separately based on the	 Transaction Type, Customer Details, and an underlying	 SNSW
Key, without the	 need to store	 and manage	 a	 massive	 number of individual keys.

By using a Value Added	 Service the Encryption	 Mechanism, particularly the method	 of key
generation, can be	 completely	 obscured from the	 majority	 of developers, yet still be	 made	 available	
to those developers through a controlled programmatic API.

4.7.4 Agency Availability, performance and Caching
When dealing with large agencies, there is a reasonable expectation that the agency system is highly
available, highly resilient, and highly performant.

When dealing with smaller agencies, or where IT is not their primary focus, it is not reasonable to
expect the same level of availability or performance from their systems.

Our Customers and Staff expect the same level of availability and performance across all systems
presented	 by Service NSW. This is not an	 unrealistic expectation	 as the Customer has no knowledge
of the underlying agency, their capabilities or priorities.

This presents a	 problem for Service NSW. Uplift Agency Capability is time consuming and costly, and
typically a cost	 born by Service NSW. While it	 is almost	 always preferable to uplift	 the Agency
Capability it is not always practical.

Caching can	 be introduced	 in	 this situation	 to	 a Transaction	 through	 the use of a Value Added	
Service, a	 Caching VAS. The	 Caching VAS	 should allow for temporary storage	 of data	 from the	
downstream agency, to	 allow the smooth	 provision	 of Customer Capability.

It 	should 	be 	noted 	that 	Caching 	can 	not 	solve 	all	Agency 	Provisioning 	issues, 	and is 	not 	suitable 	to 	all	
transactions. It	 should be applied on a Transaction by Transaction basis to suit	 the needs of	 the
transaction. In all situations the Cached data should be short	 lived (at	 most	 24 hrs, in most	 situations
minutes is preferable).

The Cache VAS	 should offer simple APIs:

- Write to Cache
- Read	 from Cache
- Delete from Cache

All data stored	 in	 the Cache should	 be encrypted. For caching the encryption	 required	 is not as
significant as	 that used for long term data storage as	 the data is	 short lived.

4.7.5 Large File Handling
The current implementation of the Transaction Logic Components utilise the APIs and	 APIGEE
Service	 Bus for the	 passing of Data	 Files (PDF	 Files, Image	 Files etc). This has the	 advantage	 of not
requiring the handling or	 storage of	 this data outside the SNSW environment, thus reducing the risk

Ver: 1.2 35

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
		

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 			

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	

	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		

SNSW Omni Channel Reference Architecture
of data loss, while enabling the	 underlying transmission protocols to handle	 data	 encryption and
protection.

It is 	noted 	that 	as 	technology 	changes, 	these 	files 	may 	increase in 	size, 	particularly 	image 	files, 	which
may then impact the performance of the Service Bus platforms. The risk of this impact on the Service
Bus has been	 anticipated, and	 mitigated, through	 the reduction	 of processing in	 the Service Bus. Still
the risk exists, and may need to be addressed in future.

One solution is to use external storage for	 the handling of file data, and	 therefore only pass
references to the file data through the Service Bus. This has the advantage of	 not	 carrying the load of	
a	 files raw data	 through the	 Service	 Bus. This has the	 disadvantage	 of creating a	 point of weakness,
where files are	 now stored outside	 the	 SNSW environment, and now need to be	 managed.

To date the impact of processing file data	 through the Service Bus has not justified the complexity	 of
managing file data outside the SNSW ecosystem.

4.7.6 Data Storage
The current architecture design is	 based on a Stateless	 Microservice Architecture, and so has	 little to
no	 Data Storage demands (outside that required	 for Audit Logging and	 Metrics Logging).

A	 Stateless Microservice Architecture may not ultimately be applicable to	 all Transactions. Some	
Transactions may require a	 local operational data	 store (note this should be the exception, not the
norm). The use of a local operational data store is problematic for PCF components as PCF has no	
concept of localised File Storage.

Therefore	 the	 suggested approach for Operational Data	 Store	 for transaction data	 should be	 the	 use	
of a localised	 AWS database provisioned	 via PCF. This database should	 be used	 only by the
transaction it	 is intended for, and not	 store data for	 an extended duration.

- No data should be kept for more than 30 days.
- All personal data should	 be encrypted.

4.7.7 Alerts
Alerts need	 to	 be built into	 the underlying architecture through	 a Value Added Service, so that when
a	 transaction (or supporting component) fails for any reason an alert can be	 logged, and then (where	
necessary) raised	 to	 a support operator for investigation.

Currently the process of identification	 of failure relies greatly on	 after the	 event resolution (ie	
notification	 from a Customer or CSR	 of failure). This makes the response reactive in	 nature, and	
places the supporting teams under considerable pressure as the failure has already been	 noticed	 in	
production.

A	 more sustainable solution is	 to log the Alert through a Value Added Service, and when a threshold
is 	reached 	(for 	an 	alert 	type) 	an 	SMS 	or 	Email	is 	automatically 	sent 	notifying 	support 	of 	the 	need 	for
further	 investigation.

This approach should be built into all Transaction	 Components, and	 used	 whenever failures or
exceptions occur.

4.7.8 Digital Asset Management
With the UX Components being light weight throwaway implementations, there is a need to provide
a	 level of consistency and control across what is displayed and how. To achieve even a basic	 level of
consistency	 a Digital Asset Management (DAM) platform is	 utilised.

Ver: 1.2 36

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
		

	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	
	 	 	
	 	 	 	 	 	 	 		

	
	 	 	 	 	 	 	 	 	 	 	

		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		

SNSW Omni Channel Reference Architecture
The DAM is implemented as a	 lightweight CMS	 platform, provisioned on AWS, using a	 WordPress
Instance.

WordPress was selected not so much for its ability to deliver 	CMS 	web 	pages, 	but 	rather 	because 	of
its 	ability 	to 	offer 	API	access 	to 	the 	underlying 	content 	stored in 	its 	repository.	No 	actual	web 	pages
are	 delivered through WordPress (a	 separate	 Digital Drupal instance	 is used for this, outside	 the	
scope of this 	paper).	WordPress is 	purely 	used 	to 	manage 	content 	snippets, 	images, 	copy 	text, 	and
other static content that is utilised	 by the UX	 Components.

In 	general	the 	pattern 	followed is 	for 	the 	UX 	Component, 	on 	start 	up, 	to 	access 	the 	static 	content it
required to generate	 a	 page	 from the	 WP	 DAM. This content is then rendered onto the	 Clients
screen.

The advantage of hosting the Static Content outside of the core application component is that the
content can be changed independently	 of the software release cycle. The Business	 can change copy	
text	 any time regardless of	 the phase of	 a software release. Note this is an ideal situation which is
rarely achieved, but	 a worthwhile aim.

The level of content stored in the DAM will vary depending on the Transaction being 	accessed.	In
general any	 static content that is likely	 to change, such as welcome	 messages, headers, footers, help
text, survey questions, etc should be stored in the DAM.

The DAM provides a	 simple editor, and version control allowing for easy editing and publishing of
content.

The DAM has its own internal cache, which requires manual refreshing when changes are made (for
immediate 	reflection in 	the 	UX),	though 	there 	is a 	daily 	refresh 	of 	the 	WP 	Cache.

The DAM also sits behind the AWS	 CloudFront CDN, another form of a	 cache, a	 faster cache, which
must also be refreshed for any immediate change to be reflected in the UX Component.

That is there are two caches which must be refreshed for an immediate content change.

Note the WP Cache is now somewhat redundant through the	 use	 of the	 CloudFront CDN, but has not
yet been removed from the implementation.

4.7.9 CRM
For the	 foreseeable	 future	 the	 CRM of choice	 will remain SalesForce.

SalesForce	 will continue	 to be	 used for the	 management of Customer Data, and Case	 Records.

Where Customer Data is required in a Transaction process this should be sourced from SalesForce.

Where Case Data is required to be held, this should be written back to SalesForce.

The interface to manipulate information within the CRM should be centralised	 through	 a Value
Added	 Service (one VAS for	 Customer	 and one VAS for	 Case).

The Customer VAS	 should allow the manipulation (Find, Create, Read, Update, Delete) of all
Customer Data.

The Case VAS	 should allow the manipulation (Find, Create, Read, Update, Delete) of all Case	 Data.

The Case VAS	 should also allow the	 manipulation of a	 Cases State, and manipulation of a	 Cases
Queue Mechanism (placement and movement across queues).

Ver: 1.2 37

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
		

	

	

	

	

SNSW Omni Channel Reference Architecture
4.7.10 Dashboards
Much of the Architecture focuses on the delivery of Transactions. There is also the need for cross
transaction capability. One example of	 this is the idea 	of 	a Dashboard, a central work space (or
portal) allowing access by a user to	 the transactions offered	 by SNSW,	and 	historical 	information
related to these transactions.

The Dashboard can be seen a	 new UX Component, that provides a	 menu/tile style layout to access	
Transactions offered by the platform. Each transaction operates in its own right through its	 own
public interface.	 The Dashboard simply presents a common centralised location for access and
management of the discrete transactions.

The exact nature and function of a	 dashboard will be dependent on the underlying capability
available.

Ver: 1.2 38

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	

	 		

	
	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 		

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

			 	 	 	

	 	

	

	

	

	

	
	

	

	 	

	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	
	

SNSW Omni Channel Reference Architecture

5 Implementation Patterns
This section demonstrates the basic Omni Channel Reference Architecture, and	 shows how this can	
be extended	 to	 cover additional capabilities.

5.1 Single Channel Implementation
The single channel implementation is the minimum implementation 	pattern 	that 	demonstrates 	the
Reference Architecture.

It 	utilises a 	single 	User 	Experience 	Component, a 	single 	Transaction 	Logic 	Component, 	leverages a
number of Value Added	 Services, and	 integrates to	 the downstream agency.

In 	this 	model	there is 	also depicted the use of the DAM, and integration to an external service via a
Value Added Service.

This model does not depict the use of Security, Payments, or CRM.

With this model care must be taken not to build Business Logic into the UX Component as future
iterations 	may 	involve 	the 	delivery 	of a 	Multi	Channel	Solution.

With this model care must also be taken to extract common static content to the DAM, so that
changes	 are not required when adding additional channels.

Generic Transaction
DMZ Secure Zone DMZ

External Capability Agency Services Client Services Transaction Logic SNSW Services SNSW Value	 Add User	 Experience

AP
I

AP
I

AP
I

Transaction
User	 Experience

Agency Transaction Logic

Value	 Add C

Value	 Add A

Agency
ESB

Value	 Add B

External
Function

Digital Asset
Management

5.2 Multi Channel Implementation
The Multi Channel Implementation extends the Single Channel Implementation through the addition
of Multiple UX	 Components.

The Transaction Logic would remain extensively identical to the single channel model.

Additional Channels are added by the	 development of new UX Components specific to the	 channel
desired.

Ver: 1.2 39

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

			 	 	 	

	
	 	

	 	

	 	

	

	 	

	 	
	

	

	
	

	
	

	 	

	

	 	 	 	 	 	 	 	 	 	

		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
		

			 	 	 		

	
	 	

	 	

	 	

	

	 	

	 	 	
	

	

	
	

	
	

	 	

	

	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 		

SNSW Omni Channel Reference Architecture
Multi Channel Transaction	with	 DAM

DMZ Secure Zone DMZ

External Capability Agency Services Client Services Transaction Logic SNSW Services SNSW Value	 Add User	 Experience

AP
I

AP
I

Transaction
Channel 1	 UX

(CSR)
Agency Transaction Logic

Common Function
C

Common Function
A

Agency
ESB

Common Function
B

External
Function

Transaction
Channel 2	 UX

(Digital)

Transaction
Channel 3	 UX
(Mobile)

Digital Asset
Management

AP
I

5.3 Secure Multi Channel Implementation
Security is applied to the	 model through the	 use	 of the	 Ping Federate	 IDP	 component, and
MyAccount.

Security is applied at the	 API layer, requiring the	 User to Authentication prior to accessing and
executing	 specific APIs. When configured, the	 API layer will verify the	 users credential (Access Token)
against IDP, prior to allowing access to the	 API.

As security is	 applied at the	 API layer the	 security must be	 initiated within the	 UX Component. The	
UX Component Authenticates the user via the IDP, which in turn requests the user to login. Where
additional information is required, such as linking to the	 agency, this is enabled	 through	 the use of
MyAccount.

Secure	Multi Channel Transaction with	DAM

External Capability Agency Services Client Services Transaction Logic SNSW Services SNSW Value	 Add User Experience

AP
I

AP
I

Transaction
Channel 1	 UX

(CSR)
Agency Transaction Logic

Common Function
C

Common Function
A

Agency
ESB

Common Function
B

DMZ DMZ Secure Zone

External
Function

Transaction
Channel 2	 UX

(Digital)

Transaction
Channel 3	 UX
(Mobile)

Digital Asset
Management

Login UX IDP

LDAP/AD

MyAccount

AP
I

5.4 Secure Multi Channel Implementation with Payments
Adding payments to	 a transaction	 involves the redirection	 of the UX Component to	 the PSP UX, and	
the re-instantiation 	of 	the original UX	 Component on	 completion	 of the payment.

Ver: 1.2 40

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

			 	 	 	

	
	 	

	 	

	 	

	

	 	

	 	 	 	 	

	

	

	
	

	
	

	 	

	

	

	 	 	 	 	 	 	 	 	
	 		

	
	 	 		

	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 		

SNSW Omni Channel Reference Architecture
Additionally there is back end	 integration	 between	 the Transaction	 Logic and	 the PSP Tx Layer to	
allow the	 validation of the	 payment, and where	 necessary the	 reversal of the	 payment.

There is also the addition	 of new VAS components to	 track the payment and	 handle the reversal of
the payment	 if	 the transaction fails.	

Secure	Multi Channel Transaction with	DAM and Payment

DMZ Secure Zone DMZ

External Capability Agency Services Client Services Transaction Logic SNSW Services SNSW Value	 Add User	 Experience

AP
I

AP
I

Transaction
Channel 1	 UX

(CSR)
Agency Transaction Logic

Common Function
C

Common Function
A

Agency
ESB

Common Function
B

External
Function

Transaction
Channel 2	 UX

(Digital)

Transaction
Channel 3	 UX
(Mobile)

Digital Asset
Management

Login UX IDP

LDAP/AD

MyAccount

PSP	 TX PSP	 UX

AP
I

Bank

AP
I

AP
I

Payments

Reversals

5.5 Secure Multi Channel Implementation with Payments and CRM Integration
CRM integration	 allows the Transaction	 Logic Component to	 interact with	 the back end	 SalesForce
CRM platform.

Integration 	to 	the 	CRM 	platform is 	via 	two 	separate 	Value 	Added 	Services, 	one 	for 	Customer 	Details,
the other	 for	 Case Details.

Note while in this 	diagram 	Customer 	Details 	are 	sourced 	from 	the 	CRM, 	this 	model	also 	allows 	the
Customer VAS to	 source Customer Details from multiple sources, thus providing an	 element of a
single view of Customer.

Ver: 1.2 41

SNSW Omni Channel Reference Architecture
Secure	 Multi Channel Transaction with DAM,	 Payment,	 and CRM

External Capability Agency Services Client Services Transaction Logic SNSW Services SNSW Value Add User Experience

AP
I

AP
I

Transaction
Channel 1 	UX

(CSR)
Agency Transaction Logic

Common 	Function
C

Common 	Function
A

Agency
ESB

Common 	Function
B

DMZ DMZ Secure	 Zone

External
Function

Transaction
Channel 2 	UX

(Digital)

Transaction
Channel 3 	UX
(Mobile)

Digital Asset
Management

Login UX IDP

LDAP/AD

MyAccount

PSP	 TX PSP	 UX

AP
I

Bank

AP
I

AP
I

Payments

Reversals

Customer

Case

SalesForce CRM

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

			 	 	 	 		

	
	 	

	

	

	

	

	 	 	 	 	

	

	
	

	
	

	 	

	

	

	

	 	 	 	 	 	 	 	 	 	

 	 	
 	 	 	
 	 	
 	
 	

	 	 	 	 	 	 	 	 	 	 	

5.6 Full Environment
The entire	 environment can therefore	 be	 depicted across a	 number of transactions as shown:

• Energy Switch

• Cost of Living

• Pet Registry
• International	Drivers 	Permit
• RSA/RCG

All of which	 utilise and	 share a number of Value Added	 Services, Payments and	 Security.

Ver: 1.2 42

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	
	

	
	

	

	

	

	

	 	
	

	

	 	
	

	

	

	 	
	

	 	
	

	 	
	

	 	

	 	

	
	

	 	
	

	

	

	

	
	

	
	

	

	

	

SNSW Omni Channel Reference Architecture

RSA/RCG
OTC UX

OneGov

User

RSA/RCG
Tx Logic

Transaction
Logging

Metrics
Logging

Receipting

Notifications
Email

Notifications
SMS

SendGrid

Twillio

Int Drivers
Permit
OTC UX

AAA
Int Drivers
Permit
Tx Logic

File Writer

Pet Registry
OTC UX

Pet Registry
Tx Logic

OLG

Pet Registry
Digital UX

Payments

Reversals

PSP UX
Digital

PSP Tx
Digital

PSP UX
OTC

PSP Tx
OTC

Bank

Cost of	 Living
Tx Logic

Cost of	 Living
Digital UX

Customer

Case

Sales 	Force
CRM

Machine
Learning

Rules Engine

Energy Switch
Tx Logic

Energy Switch
Digital UX

Vendor
System

Data Writer

DAM

AP
I

AP
I

IDP

AD

LDAP

MyAccount Login

AP
I

Ver: 1.2 43

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	
	

	 	
	

	 	
	

	 	

	 	
	

	 	
	

	 	
	

	 	
	

	

	 	 	 	 	
	 	 	 	 	 	 	 	

SNSW Omni Channel Reference Architecture

6 Future Direction
6.1 Fault Tolerance and Redundancy
The Omni Channel Reference Architecture provides a highly componentised	 solution, with	 little to	
no	 dependency between	 transactions. Each	 transaction	 in	 this model is now encapsulated	 into	 its
own	 User Experience and	 Transaction	 Logic components.

When transactions are independently	 encapsulated faults within a component are limited in impact
to that	 specific component. By allowing the split	 between the UX and the Tx Logic there is
independence 	of 	Form 	and 	Function.	Scaling 	allows 	for 	the 	duplication 	of 	components 	and in 	effect
the delivery of a network capable of now sustaining an	 outage in	 any single component.

A	 simplistic example of a scaled	 network using the microservice topology is shown.

User

Pet Registry
OTC UX

Pet Registry
Tx Logic

OLG

Pet Registry
OTC UX

Pet Registry
OTC	 UX

Pet Registry
OTC UX

Pet Registry
Tx Logic

Pet Registry
Tx Logic

Pet Registry
Tx Logic

AP
I

AP
I

If a 	Component in 	the 	network 	starts 	to 	under 	perform, 	or a 	component simply fails, the network
can simply	 rout around the failed components	 and continue operation.

Ver: 1.2 44

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	
	

	 	
	

	 	
	

	 	

	 	
	

	 	
	

	 	
	

	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 		

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	

 	 	
 	
 	 	
 	
 	 	
 	 	 	 	
 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 		

SNSW Omni Channel Reference Architecture

User

Pet Registry
OTC UX

Pet Registry
Tx Logic

OLG

Pet Registry
OTC UX

Pet Registry
OTC	 UX

Pet Registry
OTC UX

Pet Registry
Tx Logic

Pet Registry
Tx Logic

Pet Registry
Tx Logic

AP
I

AP
I

At this point a poorly performing or failed	 component can	 simply be restarted	 and	 brought back into	
the network.

There are with such a	 design critical platforms, components that represent a	 single point of failure.
In 	the 	above 	example 	the 	API	layer 	represents 	such a 	point 	of 	failure, 	as 	does 	the 	downstream
agency OLG.

These	 single	 points of failure	 are	 a	 risk to Service NSW and need to be investigated and strengthened
so that they do not have a detrimental impact on the platform.

The key areas of risk for such single failure points are:

• API Layer
• IDP 	Security 	Layer
• PSP	 Payment Platform
• SalesForce	 CRM

• Downstream Agencies
• Digital Asset Management Platform

• Databases

While some redundancy can be built into each of these platforms, it is not the intent of this paper to
provide solutions for them. Further investigation	 is required.

6.2 Scaling
With the use of a Component model, 	and a 	microservice 	architecture it is 	necessary 	to 	tune 	the
solution for optimum throughput. Tuning involves	 scaling components	 within the network.

Any component within	 the network can	 run	 as multiple instances. With only a few exceptions (such
as batch	 processes) most components should	 be set with	 a minimum number of instances of 2. Thus
there is always a distribution of	 load and a failover	 in case of	 errors.

The upper limit of scaling is determined by the capacity of the PCF	 environment, and the resources
(typically memory)	 consumed by any component.

Ver: 1.2 45

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

	
	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	

	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 		

	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	

SNSW Omni Channel Reference Architecture
In 	theory 	the 	PCF 	environment is 	capable 	of 	scaling 	the 	number 	of 	component 	instances 	to 	match
the load. With the designer	 only having to set	 limits (such as if	 capacity > 70% then add more
instances).	

In 	reality 	the 	PCF 	environment 	has a 	bug 	and 	does 	not 	scale. 	Thus it is 	important 	for 	the 	delivery
teams to correctly tune their	 applications and the number	 of	 components to handle the anticipated
load.	

While there are no set guidelines (as transaction processing and	 throughput can	 vary greatly),
observation	 has seen	 that most components only need	 between	 2-6	 instances to handle	 the	 sort of
load 	experienced 	by 	Service 	NSW.	

6.2.1 Scaling VAS Components
VAS represent a special circumstance.

While there are over time only expected to be a limited number of different VAS Components, these
components	 are going to be used across	 many	 different transactions. Thus a	 common VAS	
component (such as	 Logging) will take significantly	 greater load than any	 single TX Logic	 Component.

These components therefore need to be scaled to a	 higher level than other	 components to handle
the cross transactional load.

6.3 Databases
The current Database implementation leverages AWS	 RDS	 and utilises a	 Microsoft SQL Server DB.

Currently there is no	 requirement for a specific DB	 Implementation, Microsoft SQL Server was
selected simply because of its	 ease of use, knowledge within the team, simplicity of operation, and
compatibility	 with development platforms.

The only DB specific	 technique used by	 the team is	 the use of SEQUENCES in the SQL Svr DB. The
generation of Sequences is used across the	 microservice	 architecture	 to allow the	 unique	 generation
of Transaction	 Numbers without the need	 to	 revert to	 a more complex GUID style 	arrangement.

No tuning has been conducted on the DB. It has simply been used as a set and forget datastore.

The current DB implementation is an Enterprise Standard deployment (multiple cores, and failover).

Further investigation may be	 warranted for a corporate standard DB.

Regardless of which	 DB	 technology is used, efforts should	 be made to	 limit the use of platform
specific	 DB techniques	 (such as	 Stored Procedures).

Ver: 1.2 46

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 		

	 	 	 	 	 	 	 	 	
	 	 	 	 	 		

		 	 	 	 		

	

	
	

	 	

	

	

	

	

	

	
	

	

	

	

	

	
	

	 	 	

	

	

	

	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	

SNSW Omni Channel Reference Architecture

7 Example Implementations
Presented here	 are	 the	 architecture	 layouts for the	 first four transactions utilising the Omni Channel
Reference Architecture.

These demonstrate the reuse of Value Added Components, the delivery of new capability, and the
clear segregation of components.

The aim of these examples is to provide guidance as to how new transactions can	 be integrated	 into	
the Omni Channel Reference Architecture.

7.1 RSA/RCG
The RSA/RCG transaction integrates to the OneGov GLS	 platform to allow Customers to register new
RSA/RCG licences.

The transaction is 	offered 	only 	over 	the 	counter 	by A	 CSR, as it requires POI, and	 Image/Signature
capture. It implements	 Security, Receipting, and Notifications.

RSA/RCG High Level Architecture

External Capability Client Services Transaction Logic SNSW Services SNSW Value	 Add Agency Services User Experience

AP
I

API

AP
I

SNSW Services

Agency Services
Client Services

RSA/RCG UX
OneGov

RSA/RCG Logic

Notification

Transaction Log

Agency
ESB

Get Licence

Update	 Licence

Receipt Generator

Write	 Log

Generate	 Rcpt

Send EMail

Get Interim	 Certificate

Submit

Get Licence

Update	 Licence

Get Rcpt

Email

Duplicate	 Party Check

Retake
Reprint Receipt

Login UX IDM

LDAP

Authenticate

Retake	 Photo

Retake	 Photo

Metrics Log

Log Metric

Send SMS

Cancel Reason

Twilio

Sendgrid

SMS

DMZ DMZ

7.2 IDP
The IDP	 transaction utilises a	 batch file integration to a	 downstream public enterprise (NRMA). The
transaction	 enables Customers to	 purchase an	 International Drivers Permit from a CSR.

This is the first transaction to utilise the PSP	 payment platform.

This transaction also introduced the use of the DAM.

Ver: 1.2 47

SNSW Omni Channel Reference Architecture
IDP High Level Architecture

External Capability Agency
Services

SNSW Value	 Add SNSW
Services

Transaction
Logic

Client
Services

User	 Experience

IDP UX IDP TX

TX Log

Metric Log

PSP	 UX

File	 Writer

NRMA

AP
I

BANK PSP	 TX

AP
I

CSR

Customer
Se
tu
p
Pa
ym

en
t

Payment

Reconciliation

Co
m
pl
et
e	

 Pa
ym

en
t

Application

Receipt

DMZ DMZ Secure	 Zone

Digital Asset
Management

AP
I

Update

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

						

	 	

	

	

	 	 	

	

	 	

	

	 	 	 	 	 	 	 	 	 	 	 	

	
		

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 		

	

7.3 CAR
The Companion Animals Register transaction	 is the first to	 integrate a new government agency
(OLG),	and 	also 	the 	first 	to 	offer 	multiple 	channels 	for 	transaction 	(both 	Digital 	and 	Over 	the
Counter).

The platform fully integrates to MyAccount, and the PSP, and implements the reversal process
mimicking a two phase commit for payments.

It is 	also 	the 	first 	transaction 	to 	integrate 	to 	SalesForce 	CRM 	and 	develop 	out 	the 	Customer 	VAS.

Ver: 1.2 48

SNSW Omni Channel Reference Architecture
CAR High Level Architecture

Value	 Added Agency Services External Capability SNSW Services Transaction Logic Client Services User Experience

Client Services

Agency
Services

Customer

CSR

Pet UX
Digital

Login IDP

MyAccount

POI DVS

Link /
Consent

OLG CAR Pet TX

Pet UX
OTC

Logging

Receipt

Notification

PSP	 UX PSP	 TX Bank

Receipt

Add Pet

Check

Send Receipt

Re
qu

es
t P

ay
m
en
t

Add Pet

Pay Pay

AP
I

AP
I

Verify Customer

Price	 Application

Finalise	 Application

Price Application

Apply for	 Pet

Sendgrid

Payments

Reversals

Customer CRM

DMZ DMZ Secure Zone

Digital Asset
Management

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

	 					

	

	

	 	 	

		

	

	

	

	

	

	

	

	

	

	 	 	

	 	

	

	

	 	 	 	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 		

7.4 Cost of Living
The Cost of Living program is a	 Digital Transaction wholly contained	 within	 Service NSW (no	
downstream agency integration).

The transaction leverages MyAccount, and introduces new capability in terms of a	 Rules Engine,
Machine Learning Data Store, and Case Integration to SalesForce.

This transaction also integrates to the	 DAM.

Ver: 1.2 49

	
	 	 	 	 	 	 	

	 	 	
	 	 	 	

			 	 	 		

	
		

	

	 	 	 	

	

	 	

	

	

	

	 	

	

	

	

	
		

	
		

	

AP
I

w
a

SNSW Omni Channel Reference Architecture
Cost	 of Living High Level Architecture

External Capability Agency Services Client 	Services Transaction Logic SNSW Services SNSW Value Add User Experience

Ga
te

y
-A

pi
ge
e

Customer

Transaction Logic

Logging

DMZ DMZ Secure	 Zone

Digital UX

Digital Asset
Management

Login UX

IDP

LDAP/AD

MyAccount

Case 	Management

SalesForce

CRM

Customer

Qstn
Text

Booking System

Authenticate

Calculate 	Options

Analytics /	AI
Engine

Get Questions

Setup Data

Data Store

Notifications SendGrid

AP
I G

at
ew

ay
 -
Ap

ig
ee

AP
I G

at
ew

ay
 -
Ap

ig
ee

Ver: 1.2 50

	Structure Bookmarks
	Service NSW
	Omni Channel Reference Architecture

